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ABSTRACT: If 𝑑 is a positive integer, not perfect square, Lagrange was the first to show that Pell's equation has an infinite 

number of solutions, and hence these solutions are non-trivial. It is a descriptive study in which the proposition is verified by 

the use of theorems as well as a number theoretic approach. The goal of this paper is to investigate and obtain solutions of 

the generalized Pell's equation. The study methods includes a review and debate of previously available documents to reach 

the solvability of generalized Pell's equation. There are many techniques for solving Pell's equations, but we observed the 

techniques are convergence of the continued fraction technique, PQa technique, LMM technique, and Brute-Force Search 

technique in the solutions of generalized Pell's equation.  
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INTRODUCTION 

The study of Diophantine equations is to find the integral or rational solutions of polynomial equations. In Mathematics, 

polynomial equation usually involving two or more unknowns such that the only integers or rational solutions are studied. 

The term Diophantine relates to Diophantus of Alexandria, a Hellenistic Mathematician from 3𝑟𝑑century, who studied this 

equation and was one of the first Mathematicians to use symbols in algebra (Austin 1981). Aryabhatta (Ansari 1977) was 

one of the first ancient Indian Mathematicians to develop an approach to solving first degree Diophantine equations.  

A. Thue (1909) proved the important result on congruence equations by using bounds. Suppose 𝑎, 𝑏  are integers with 1 <

𝑏 < 𝑎 and  𝑔𝑐𝑑(𝑎, 𝑏) = 1. Then the congruence 𝑏𝑥 ≡ 𝑦(𝑚𝑜𝑑 𝑎) has a solution (𝑥, 𝑦) satisfying |𝑥| ≤ √𝑎 and |𝑦| ≤ √𝑎, 

where 𝑥 and 𝑦  are non-zero integers. The equation 𝐹(𝑥, 𝑦) = 𝑁, where 𝐹 is an integral binary form, 𝑁 is a non-zero integer 

and  𝑥, 𝑦 are integers, is called the Thue equation. This equation is of small degree can be solved over the integers using 

algorithms that are implemented in computer algebra programs (Bilu & Hanrot 1996).  A. Baker (1968) comprehensive 

research of linear forms in the logarithms of algebraic numbers resulted in the first effective proof of Thue's discoveries. A. 

Thue (1909) devised a method in the theory of Diophantine approximations to solve the problem of approximating algebraic 

numbers by rational numbers. One can find a value 𝜗 = 𝜗(𝑛) so that for every 𝑛𝑡ℎ degree algebraic number 𝛼, the inequality  

                                                   |𝛼 −
𝑝

𝑞
| <

1

𝑞𝜗+𝜀                                                                                                (1) 
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has a finite solutions in rational for some 𝜀 > 0 and infinite solutions for any 𝜀 < 0. A. Thue proved that 𝜗 ≤
𝑛

2
+ 1. Thue's 

technique is based on the properties of a specific polynomial 𝑓(𝑥, 𝑦) with integer coefficients in two variables 𝑥, 𝑦, and the 

fact that there exist two solutions of (1) for 𝜗 ≤
𝑛

2
+ 1 with sufficiently large values of 𝑞. By extending, Thue's technique to 

any polynomial about any number of variables which is related to the polynomial 𝑓(𝑥, 𝑦) and use of the large number of 

solutions of (1). Roth (1955) obtained the approximation of the size of 𝜗 which is called the Thue–Siegel–Roth theorem and 

states that 𝜗 = 2  for any 𝑛 ≥ 2. Thue's technique can be extended to the case of algebraic approximation. Thue proved the 

following theorem. 

Theorem (Thue 1909) 

Let 𝑁 be a non-zero integer and 𝑓 = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0 be an irreducible polynomial with integral 

coefficients and degree of 𝑛 ≥ 3. Consider a homogeneous polynomial 

𝐹(𝑥, 𝑦) = 𝑦𝑛𝑓 (
𝑥

𝑦
) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1𝑦 + ⋯ + 𝑎1𝑥𝑦𝑛−1 + 𝑎0𝑦𝑛 

Then the equation 𝐹(𝑥, 𝑦) = 𝑁 has either no solution or only a finite number of solutions in integers. 

When the degree of 𝐹 is 𝑛 = 2 the above theorem is in contrast situation (Dickson 1957). For instance,  

if 𝐹(𝑥, 𝑦) = 𝑥2 − 𝑑𝑦2, where 𝑑 is positive integer, not perfect square, then for non-zero integer 𝑁, the quadratic Diophantine  

equation of the form  

                                                      𝑥2 − 𝑑𝑦2 = 𝑁                                                                                                         (2) 

 has either no or infinitely many integral solutions. The equation (2) is referred to as the generalized Pell’s equation (Dickson 

1957), which is named after John Pell, a Mathematician who worked in the 17𝑡ℎ century to find the integer solutions to 

equations of this type. 

When 𝑁 = 1, equation (2) becomes 

                                                                 𝑥2 − 𝑑𝑦2 = 1                                                                                    (3) 

It is known as the classical Pell's equation (Barbeau 2003,  Niven et al. 1991) and Brahmagupta (598–670) and Bhaskara 

(1114–1185) were the first to study of this equations (Arya 1991). Lagrange (1736-1813), not Pell, developed the theory. 

When 𝑑 is a positive, not perfect square, Lagrange was the first to show that Pell's equation has an infinite number of solutions 

in (Niven et al.1991). In fact, if (𝑥1, 𝑦1) is initial solution of (3), then 𝑛𝑡ℎ positive solution is (𝑥𝑛, 𝑦𝑛) defined by  𝑥𝑛 +

𝑦𝑛√𝑑 = (𝑥1 + 𝑦1√𝑑)
𝑛

, for integer 𝑛 > 1 (Niven et al.1991).   

 

Example 

Suppose 𝐹(𝑥, 𝑦) = 𝑥3 − 3𝑦3 is irreducible and therefore, every equation 𝑥3 − 3𝑦3 = 𝑁, 𝑁 ∈ ℤ, has only finitely many 

integral solutions. This contrasts with Pell’s equation 𝑥2 − 3𝑦2 = 1 that has infinitely many solutions. 

Matthews (2000) considered the solutions of (2) for 𝑑 > 0. For the solvability of (2) with 𝑔𝑐𝑑(𝑥, 𝑦) = 1 a necessary 

condition is that the congruence 𝑢2 ≡ 𝑑(𝑚𝑜𝑑 𝑄0) shall be solvable, where 𝑄0 = |𝑁|. Mollin (2001) also gave a formula for 

the solutions to both equations 𝑥2 − 𝑑𝑦2 = 𝑐 and 𝑥2 − 𝑑𝑦2 = −𝑐 using the ideals 𝐼 = [𝑄, 𝑃 + √𝑑], where 𝑑 > 0, not perfect 

square. Mollin et al. (2002) considered the solutions to the Diophantine equation 𝑎𝑥2 − 𝑏𝑦2 = 𝑐 in continued fraction of 

√𝑎2𝑏 and they explored criteria for the solvability of 𝑎𝑥2 − 𝑏𝑦2 = 𝑐 where 𝑎, 𝑏, 𝑐 are positive integers. Mollin et al. (1994) 
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considered the equation 𝑥2 − 𝑑𝑦2 = −3. Several researchers, including Kaplan and Williams (1986), Lenstra (2002), Tekcan 

(2004), and others, looked at particular specific Pell's equations and their integer solutions. 

Theorem (Niven et al.1991) 

Every Pell’s equation 𝑥2 − 𝑑𝑦2 = 1 has a non-trivial solution. Moreover, it has infinitely many solutions. 

Proof 

Since 𝑑 is positive integer, not a perfect square, √𝑑  is irrational. Then there are infinitely many distinct fractions 
𝑎

𝑏
 such that 

|√𝑑 −
𝑎

𝑏
| <

1

𝑎2 which satisfy  

|𝑎2 − 𝑑𝑏2| = |𝑎 − √𝑑𝑏||𝑎 + √𝑑𝑏| 

                                       = 𝑎 |√𝑑 −
𝑎

𝑏
| |𝑎 + √𝑑𝑏|                  

 <
|𝑎 + √𝑑𝑏|

𝑏
 

≤
𝑎

𝑏
+ √𝑑    

≤ 2√𝑑 + 1 

 Thus, 𝑎2 − 𝑑𝑏2 = 𝑁 has infinitely many solutions such that  𝑁 > 0  and 
𝑎

𝑏
∈ ℚ.  

If irrationality of √𝑑  ⇒ 𝑁 ≠ 0. Then there are only finitely many solutions, 𝑁2 possibilities for the residues of the pairs 

(𝑎, 𝑏) modulo |𝑁|. Thus, we can select two distinct fractions 
𝑎1

𝑏1
,

𝑎2

𝑏2
 such that  

𝑎1
2 − 𝑑𝑏1

2 = 𝑎2
2 − 𝑑𝑏2

2 = 𝑁 and 𝑎1 ≡ 𝑎2, 𝑏1 ≡ 𝑏2 modulo |𝑁|. 

 

Consider the numbers 𝑝, 𝑞 defined by 

𝑝 + 𝑞√𝑑 =
𝑎1 + 𝑏1√𝑑

𝑎2 + 𝑏2√𝑑
 

                                           =
(𝑎1 + 𝑏1√𝑑)(𝑎2 − 𝑏2√𝑑)

(𝑎2 + 𝑏2√𝑑)(𝑎2 − 𝑏2√𝑑)
 

                                                             =
(𝑎1𝑎2 − 𝑏1𝑏2𝑑) + (𝑎1𝑏2 − 𝑏1𝑎2)√𝑑

𝑎2
2 − 𝑑𝑏2

2  

                                                             =
(𝑎1𝑎2 − 𝑏1𝑏2𝑑)

𝑁
+

(𝑎1𝑏2 − 𝑏1𝑎2)

𝑁
√𝑑 

We claim that (𝑝, 𝑞)  is a non-trivial solution of (3). 

The numerators are integral multiples of 𝑁 because, using the congruences  

𝑎1 ≡ 𝑎2, 𝑏1 ≡ 𝑏2 modulo |𝑁| 

we have 𝑎1𝑎2 − 𝑏1𝑏2𝑑 ≡ 𝑎1
2 − 𝑑𝑏1

2 = 𝑁 ≡ 0 and 𝑎1𝑏2 − 𝑏1𝑎2 ≡ 𝑎2𝑏1 − 𝑏2𝑎1 = 0 

Thus, (𝑝, 𝑞) ∈ ℤ.  

Hence  

𝑝2 − 𝑑𝑞2 = (𝑝 + 𝑞√𝑑)(𝑝 − 𝑞√𝑑) 

                              =
(𝑎1 + 𝑏1√𝑑)(𝑎1 − 𝑏1√𝑑)

(𝑎2 + 𝑏2√𝑑)(𝑎2 − 𝑏2√𝑑)
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               =
(𝑎1

2 − 𝑏1
2√𝑑)

(𝑎2
2 − 𝑏2

2√𝑑)
 =

𝑁

𝑁
 

  = 1                    

Theorem (Niven et al.1991) 

If the generalized Pell’s equation 𝑥2 − 𝑑𝑦2 = 𝑁 has an integral solution, then it has infinitely many integral solutions. 

Proof 

For 𝑔, ℎ, 𝑒, 𝑓 ∈ ℤ, suppose (𝑔, ℎ)  and (𝑒, 𝑓) are solutions of equations (2) and (3).  

Then 𝑥 + 𝑦√𝑑 = (𝑔 + ℎ√𝑑)(𝑒 + 𝑓√𝑑) is a solution of equation (2). 

Now, 

 𝑥2 − 𝑑𝑦2 = (𝑥 + 𝑦√𝑑)(𝑥 − 𝑦√𝑑) 

                                                            = (𝑔 + ℎ√𝑑)(𝑒 + 𝑓√𝑑)(𝑔 − ℎ√𝑑)(𝑒 − 𝑓√𝑑) 

                     = (𝑔2 − 𝑑ℎ2)(𝑒2 − 𝑑𝑓2) 

 = 𝑁. 1                 

 = 𝑁                     

Multiplying one solution of (2) by infinitely many solutions of (3). We get infinitely many solutions of (2). 

 

Continued Fraction: If 𝜉 is a real number, the simple continued fraction of 𝜉 is given as 

𝜉 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

⋱ +
1

𝑎𝑛

 

for all 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∈ ℕ, 𝑎0 ∈ ℤ. It is denoted by 𝜉 = [𝑎0; 𝑎1, 𝑎2, ⋯ , 𝑎𝑛]. As they are determined by repeated application of 

the division algorithm, each 𝑎𝑖 are partial quotients. Every rational integer can be expressed as a simple continued fraction 

using the Euclidean algorithm. Hence, a real number is rational if and only if its continued fraction expansion is finite. The 

continued fraction is an infinite continued fraction if the number of terms in a simple continued fraction is infinite. As a 

result, every infinite continued fraction is irrational, and every irrational number can be written as an infinite continued 

fraction in exactly one way. The beginning parts of an infinite continued fraction representation for an irrational number 

provide rational approximations to the number. The convergent of the continued fraction refers to these rational numbers. 

The 𝑛𝑡ℎ convergents of the continued fraction [𝑎0; 𝑎1, 𝑎2, ⋯ ] is  
𝐴𝑛

𝐵𝑛
 and recurrence relation are 

𝐴𝑛𝐵𝑛−1 − 𝐴𝑛−1𝐵𝑛 = (−1)𝑛−1 

                                                      𝐴𝑛+1 = 𝑎𝑛+1𝐴𝑛 + 𝐵𝑛−1,   𝐵𝑛+1 = 𝑎𝑛+1𝐵𝑛 + 𝐵𝑛−1, for 𝑛 ≥ 1. 

Fundamental Solution: A solution 𝑥 + 𝑦√𝑑  to (2) is the fundamental solution in its class (Nagell 1951) if 𝑦 is the minimal 

non-negative 𝑦 among all solutions in the class. If two solutions in the class have the same minimal non-negative 𝑦, then the 

solution is the fundamental solution for 𝑥 > 0. 

If (𝑥, 𝑦), where 𝑥, 𝑦 ∈ 𝑍, is a solution to (2), it is known as positive and (𝑥, 𝑦) is called primitive if 𝑔𝑐𝑑(𝑥, 𝑦) = 1. So, the 

primitive solutions of (3) if such solutions exist, there is one in which both 𝑥 and 𝑦 have their least values. A fundamental 

solution is one that is based on a continued fraction expansion of √𝑑. Suppose there are positive integral solutions to (3). 
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Then the fundamental solution is least positive solution (𝑥1, 𝑦1) such that 𝑥1 < 𝑢 and 𝑦1 < 𝑣 for all other positive 

solutions (𝑢, 𝑣). 

Nagell (1951) gives necessary conditions for a solution to (2) to be a fundamental solution, but does not give sufficient 

conditions. 

METHODS 

The methods of proof include inductive, deductive, contrapositive, and contradiction. In addition to theorems in general, 

Algebraic, Analytic, Topological, and number theoretic approaches may need new results. The main goal to is obtain the 

solutions of the generalized Pell's equation are relevant. It will be shown that how the solutions to the generalized Pell's 

equation are achieved using various strategies. So it is a descriptive study in which the proposition is proven using a number 

theoretic approach with theorems and examples. Based on a review and debate of previously available documents, the main 

result of the criterion for the solvability of generalized Pell's equation was reached. 

RESULTS 

A quadratic irrational is a positive discriminant number that solves a quadratic equation with integer coefficients but is not a 

perfect square. It will be concerned with the continued fraction expansions of quadratic irrationals 𝜉0 =
𝑏+√𝑑

𝑐
, where 𝑏, 𝑐 ≠

0, 𝑑 is positive integer, not perfect square have been studied extensively (Olds 1963). If 𝑑 > 0, not perfect square, there is a 

positive integer 𝑟 so that the continued fraction expansion of √𝑑 in (Olds 1963) is 

√𝑑 = [𝑎0; 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑟, 2𝑎0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  

where 𝑎0 = ⌊√𝑑⌋ is a greatest integer and for all 1 ≤ 𝑖 ≤ 𝑟, each 𝑎𝑖 is partial denominator of the continued fraction. The 𝑘𝑡ℎ 

convergent of 𝜉0for 𝑘 ≥ 0 is given by  

𝐴𝑘

𝐵𝑘
= [𝑎0; 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑟, 2𝑎0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

where 

𝐴𝑘 = 𝑎𝑘𝐴𝑘−1 + 𝐴𝑘−2, 𝐴−2 = 0, 𝐴−1 = 1 

𝐵𝑘 = 𝑎𝑘𝐵𝑘−1 + 𝐵𝑘−2, 𝐵−2 = 1, 𝐵−1 = 0 

The complete quotients are given by 

𝑃𝑘+√𝑑

𝑄𝑘
= 𝑎0 +

1

𝑎1+
1

𝑎2+
1
⋱

  

where 𝑃0 = 0, 𝑄0 = 1 and for 𝑘 ≥ 1 

𝑃𝑘+1 = 𝑎𝑘𝑄𝑘 − 𝑃𝑘  ,  𝑎𝑘 = ⌊
𝑃𝑘+√𝑑

𝑄𝑘
  ⌋,    𝑑 = 𝑃𝑘+1

2 + 𝑄𝑘𝑄𝑘+1 

A real number is periodic continued fraction expansion if and only if it is a quadratic irrational number in (Mollin 2001). 

Furthermore a quadratic irrational is a purely periodic continued fraction expansion if it has the form  

𝜉0 = [𝑎0; 𝑎1, 𝑎2, … 𝑎𝑟−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

for 𝑎𝑛 = 𝑎𝑛+𝑟, for all 𝑛 ≥ 0, where 𝑟 = 𝑟(𝜉0) is the period length of the simple continued fraction expansion. It is known 

that a quadratic irrational has such purely periodic expansion if and only if  

𝜉0 > 1and −1 < 𝜉0
′ < 0, where 𝜉0

′  is the algebraic conjugate of 𝜉0. So, quadratic irrational which satisfies these two 

conditions is reduced in (Mollin 2001). 

The following theorem indicates a relation between generalized Pell's equation and simple continued fractions. 
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Theorem (Kumundury & Romero 1998) 

If 𝑑 be a positive non-perfect square integer, then ℎ𝑛
2 − 𝑑𝑘𝑛

2 = (−1)𝑛−1  𝑞𝑛+1 for every integers  𝑛 ≥ −1. 

This theorem gives us solution to (2) for given value of N.  

So, the following theorem establishes the connection between the convergence of √𝑑 and the solutions of equation (2) for 

0 < 𝑁 < √𝑑. 

Theorem (Niven et al.1991) 

Let 0 < 𝑁 < √d and (𝑃, 𝑄) be a solution of the equation 𝑥2 − 𝑑𝑦2 = 𝑁. Then 
𝑃

𝑄
  is convergent in the expansion of √d. 

Proof  

Since (𝑃, 𝑄)  is a solution of the equation (2) . Then 

𝑁 = 𝑃2 − 𝑑𝑄2 = (𝑃 − 𝑄√𝑑)(𝑃 + 𝑄√𝑑) 

Since 0 < 𝑁 < √𝑑  √𝑑 > 𝑁 > 0 

Then, we have  

0 <
𝑃

𝑄
− √𝑑 <

𝑁

𝑄(𝑃 + 𝑄√𝑑)
<

√𝑑

𝑄(𝑃 + 𝑄√𝑑)
 

 Since 𝑄√𝑑 < 𝑃   2𝑄√𝑑 < 𝑃 + 𝑄√𝑑  

Then, we have  

0 <
𝑃

𝑄
− √𝑑 <

√𝑑

𝑄(𝑃 + 𝑄√𝑑)
<

√𝑑

2𝑄2√𝑑
=

1

2𝑄2
  

        0 <
𝑃

𝑄
− √𝑑 <

1

2𝑄2
   

 |
𝑃

𝑄
− √𝑑| <

1

2𝑄2
  

It follows that 
𝑃

𝑄
  is a convergent of √𝑑. 

Let (𝑝, 𝑞) be single solution to (2) and  (𝑟, 𝑠) be solution to (3). 

Then  

(𝑝2 − 𝑑𝑞2)(𝑟2 − 𝑑𝑠2) = 𝑝2𝑟2 − 𝑑𝑝2𝑠2 − 𝑑𝑞2𝑟2 + 𝑑2𝑞2𝑠2  

                                = (𝑝𝑟 ± 𝑑𝑞𝑠)2 − 𝑑(𝑝𝑠 ± 𝑞𝑟)2  

= 𝑁                

Thus, (𝑥, 𝑦) = (𝑝𝑟 ± 𝑑𝑞𝑠, 𝑝𝑠 ± 𝑞𝑟) is also solutions to (3) to be found by using incrementally larger values of (𝑟, 𝑠), which 

can be easily computed using the standard technique for the Pell’s equation. 

 

DISCUSSION 

The unique solution (𝑥, 𝑦) with the least 𝑥, 𝑦 > 0 is defined as the minimal positive solution of a class of solutions. Because 

all solutions to (3) may be created from its minimal positive answer, we only need to identify the minimal positive solution 

to (3) and a single solution from each class of equations to find all solutions to (2). This is demonstrated in the following 

theorem. 
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Theorem 

Let (𝑥, 𝑦) be a solution of 𝑥2 − 𝑑𝑦2 = 𝑁 and (𝑥1, 𝑦1) be a solution of 𝑥2 − 𝑑𝑦2 = 1. Pair of linear recurrence relations be 

defined as  

𝑋𝑖 = 2𝑥1𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖 = 2𝑦1𝑌𝑖−1 − 𝑌𝑖−2    

with initial condition (𝑋0, 𝑌0) = (𝑥, 𝑦)  and (𝑋1, 𝑌1) = (𝑥𝑥1 + 𝑦𝑦1𝑑, 𝑥 𝑦1 + 𝑦𝑥1) all solutions to  

𝑥2 − 𝑑𝑦2 = 𝑁 in (𝑥, 𝑦)  are given by (𝑋𝑖, 𝑌𝑖), for 𝑖 ∈ ℤ. 

The Perceptual Quality Adaptation (PQa) technique can be used to find the smallest positive solution to (3). This technique 

is based on the continued fraction expansion of √𝑑. Because general limitations on these solutions are known, the 

fundamental solutions to (2) may frequently be found via a Brute-Force Search technique. Although Euler demonstrated a 

more convenient method of solving Pellian equations by using the continuous fraction expansion of √𝑑, Lagrange was the 

first to prove the existence of solutions. He presented a direct method of finding integral solutions of equations in his classic 

memoirs. Lagrange's reduction is another name for this procedure. The Lagrange-Matthews-Mollin (LMM) technique in is a 

modified version of this approach (Robertson 2004). The LMM technique is the main method for solving the generalized 

Pell's equation 𝑥2 − 𝑑𝑦2 = 𝑁 , is slightly more difficult to solve Pell's equation  

𝑥2 − 𝑑𝑦2 = 1, than the traditional continued fraction. While Lagrange (Matthews, 1961) knew about this procedure, it was 

mostly unknown until it was recently uncovered independently by another researcher. The following theorems characterize 

fundamental solutions to equation 𝑥2 − 𝑑𝑦2 = 𝑁. 

Theorem (Nagell 1951) 

Let (𝑎, 𝑏) be fundamental solution of equation 𝑎2 − 𝑑𝑏2 = 𝑁 and (𝑎1, 𝑏1) be the least positive solution to the equation 𝑎2 −

𝑑𝑏2 = 1. Then  

0 ≤ 𝑏 ≤  √
𝑁(𝑎1−1)

2𝑑
, for 𝑁 > 0  and  √

|𝑁|

𝑑
≤ 𝑏 ≤ √

|𝑁|(𝑎1+1)

2𝑑
, for 𝑁 < 0 

The following techniques were used to compute the solution of the generalized Pell's equation; 

Continued Fractions Technique (Mollin et al. 1994) 

For any positive solution to (3), there is a convergent 
𝑝

𝑞
 to √𝑑 such that 𝑥 = 𝑝 and 𝑦 = 𝑞, which is basis for Lagrange's proof 

that Pell's equation 𝑥2 − 𝑑𝑦2 = 1 gives a non-trivial solution. Lagrange got a periodic continued fraction of √𝑑  and 

explained where to get the positive solution to (3)  among the convergent to √𝑑. If 𝑑 >0, not perfect square, then Pell's 

equation have infinitely many solutions. So, the continued fraction expansion of √𝑑 plays most important role to get the 

solutions of such equation. 

Theorem (Szuse & Rochett 1992) 

 Let 𝑝 and 𝑞 be two integers such that 𝑝 > 𝑞 > 0. Then [𝑎0; 𝑎1, 𝑎2, ⋯ , 𝑎𝑛−1, 𝑎𝑛] is the continued fraction of 
𝑝

𝑞
 if and only if 

𝑝

𝑞
 has [0, 𝑎0; 𝑎1, 𝑎2, ⋯ , 𝑎𝑛−1, 𝑎𝑛] as its continued fraction. 

Theorem (Olds 1963) 

Let 𝑑 > 0,  not perfect square. Then the continued fraction expansion for  

√𝑑 = [𝑎0; 𝑎1, 𝑎2, ⋯ , 𝑎𝑛−1, 𝑎𝑛, 2𝑎0], where 𝑎𝑛+1−𝑗 = 𝑎𝑗 for 𝑗 = 1,2, ⋯ , 𝑛. 

That is √𝑑 = [𝑎0; 𝑎1, 𝑎2, ⋯ , 𝑎2, 𝑎1, 2𝑎0] 
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Theorem (Olds 1963) 

Let 𝑟 be the length of the period of the expansion of √𝑑. Then the equation  

ℎ𝑛𝑟−1
2 − 𝑑𝑘𝑛𝑟−1

2 = (−1)𝑛𝑟𝑞𝑛𝑟 = (−1)𝑛𝑟  

with 𝑛 even gives infinitely many solutions to (3). 

In particular, it gives infinitely many solutions to equation (3) by the use of even number 𝑛𝑟. Of course, if 𝑟 is even implies 

that 𝑛𝑟 is even. If 𝑟 is odd, this theorem obtains infinitely many solutions to equation 𝑥2 − 𝑑𝑦2 = −1 using odd integers 𝑛 >

1. It can be shown that solution of generalized Pell's equation (2) by using continued fraction.  

Theorem (Kumundury & Romero 1998) 

 Let 𝑑 be a positive integer, not a perfect square and suppose |𝑁| < √𝑑.  If (𝑢, 𝑣) is a positive solution in integers of 𝑥2 −

𝑑𝑦2 = 𝑁, then there is a convergent (ℎ𝑛, 𝑘𝑛) of the simple continued fraction expansion of √𝑑 such that 
𝑢

𝑣
=

ℎ𝑛

𝑘𝑛
 

Theorem (Kumundury & Romero 1998) 

Let 𝑑 be a positive non- perfect square integer and 
ℎ𝑛

𝑘𝑛
 be convergent to the continued fraction of √𝑑. Let 𝑁 be an integer such 

that |𝑁| < √𝑑. Then for some positive integer 𝑛, each positive solution 𝑥 = 𝑠, 𝑦 = 𝑡 of 𝑥2 − 𝑑𝑦2 = 𝑁 with 𝑔𝑐𝑑(𝑠, 𝑡) = 1 

satisfies 𝑠 = ℎ𝑛, 𝑡 = 𝑘𝑛. 

All other positive solutions to equations 𝑥2 − 𝑑𝑦2 = ±1 are to be found among 𝑥𝑛 = ℎ𝑛 , 𝑦𝑛 = 𝑘𝑛, where 
𝑥𝑛

𝑦𝑛
 are the 

convergents of expansion of √𝑑. If 𝑟 is period of the expansion of √𝑑 and 𝑟 is even, then  

𝑥2 − 𝑑𝑦2 = −1 has no solution and all positive solutions to 𝑥2 − 𝑑𝑦2 = 1 are given by 

x= ℎ𝑛𝑟−1, 𝑦 = 𝑘𝑛𝑟−1, for 𝑛 = 1,2, ⋯,n. 

On the other, if 𝑟 is odd, then x= ℎ𝑛𝑟−1, 𝑦 = 𝑘𝑛𝑟−1 are given all positive solutions to equation  

𝑥2 − 𝑑𝑦2 = −1 for 𝑛 = 1,3,5, ⋯ and all positive solutions to 𝑥2 − 𝑑𝑦2 = 1for 𝑛 = 2,4,6, ⋯. 

We conclude that all positive solutions are (𝑥𝑛, 𝑦𝑛), where (𝑥𝑛, 𝑦𝑛) integers are defined by 

(𝑥𝑛 + 𝑦𝑛√𝑑) = (𝑥1 + 𝑦1√𝑑)
𝑛

, for 𝑛𝜖ℕ 

Then expanding by the Binomial Theorem, equating the rational and purely irrational parts of the result. 

But if |𝑁| > √𝑑, the procedure is significantly more complicated (Dickson 1957) for solution of generalized Pell’s equation. 

Although the continuous fraction strategy for solving Pell's equation is very nice for small values of 𝑑, the method's difficulty 

has been investigated to see if it is the most efficient for large d. In the length of the input 𝑑, a polynomial time technique 

would be an algorithm that took time limited by a fixed power of 𝑙𝑜𝑔 𝑑. The continuous fraction technique is not a polynomial 

time algorithm, and no polynomial time algorithm for solving Pell's equation is currently known. 

PQa Technique (Olds 1963) 

The technique for solving Pell's equations is using the PQa technique. It determines the quadratic irrationals continued 

fraction expansion of 

𝜉0 =
𝑃0 + √𝑑

𝑄0
 

for given 𝑃0, 𝑄0, 𝑑 and it finds some auxiliary variables. 

Suppose 𝑃0, 𝑄0, 𝑑 are integers such that 𝑄0 ≠ 0, 𝑑 > 0, not a perfect square and 𝑃0
2 ≡ 𝑑(𝑚𝑜𝑑𝑄0). 

For 𝑖 ≥ 1, then we set 
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𝑎𝑖 = ⌊
𝑃𝑖+√𝑑

𝑄𝑖
  ⌋ , 𝑃𝑖+1 = 𝑎𝑖𝑄𝑖 + 𝑃𝑖, 𝑄𝑖+1 =

𝑑−𝑃𝑖+1
2

𝑄𝑖
  

       

For 𝑖 ≥ 0, then we compute 𝐺𝑖 and 𝐵𝑖 by recurrence relation as follows; 

𝐺𝑖 = 𝑎𝑖𝐺𝑖−1 + 𝐺𝑖−2, 𝐺−2 = −𝑃0, 𝐺−1 = 𝑄0 

  𝐵𝑖 = 𝑎𝑖𝐵𝑖−1 + 𝐵𝑖−2, 𝐵−2 = 1  𝐵−1 = 0 

The sequence 𝑎0, 𝑎1, 𝑎2, ⋯ is a key output of this algorithm which obtains the continued fraction expansion of 𝜉0 =
P0+√d

Q0
 

So,  

𝜉0 =
𝑃0 + √𝑑

𝑄0
= 𝑎0 +

1

𝑎1 +
1

𝑎2 +
1
⋱

= [𝑎0; 𝑎1, 𝑎2, ⋯ ] 

where the 𝑎𝑖 for 𝑖 ≥ 0 are the partial quotients of 𝜉0. 

Thus, we have a relation  

𝐺𝑖
2 − 𝑑𝐵𝑖

2 = (−1)𝑖+1𝑄𝑖+1𝑄0. 

If we put 𝑄0 = |𝑁|, then (−1)𝑖+1𝑄𝑖+1 =
𝑁

|𝑁|
 

So 

𝐺𝑖
2 − 𝑑𝐵𝑖

2 = (−1)𝑖+1𝑄𝑖+1𝑄0 =
𝑁|𝑁|

|𝑁|
= 𝑁 

Hence (𝐺𝑖 ,   𝐵𝑖) is a solution of generalized Pell’s equation. 

LMM Technique (Mollin 2000, Mollin & Goddard 2002) 

The authors developed a nearly forgotten Lagrange approach for determining the solvability of general Pell's equation 𝑥2 −

𝑑𝑦2 = 𝑁, where 𝑔𝑐𝑑(𝑥, 𝑦) = 1 and and 𝑑 > 0, is not a perfect square. The fundamental solutions are likewise created in the 

case of solvability. The main goal is to show a variant of Lagrange's algorithm that simply uses simple continuous fractions 

as a technique. Although (Niven 1942) provides an analogous approach, each of the instances 𝑑 = 2 or 𝑑 = 3 and 𝑁0 requires 

its own treatment. In addition, unlike our procedure, the approach in (Niven 1942) necessitates the calculation of Pell's 

resolving’s basic solution. The algorithm of Lagrange has been rediscovered (Mollin 1996). 

The LMM technique is a fundamental solution to the generalized Pell's problem based on continued fraction. The goal of the 

LMM technique is to discover primitive solutions for each equivalence class in the solution set of equation 𝑥2 − 𝑑𝑦2 = 𝑁. 

For 𝑁0, 𝑑 > 0 , not a square, this technique discovers exactly one member from each family of solutions to the stated equation. 

Listing of 𝑓 > 0, so that 𝑓2 divides 𝑁. For each 𝑓 in this list, then we set 𝑚 =
𝑁

𝑓2. Finding all 𝑧 so that  

−
|𝑚|

2
< 𝑧 ≤

|𝑚|

2
 and 𝑧2 ≡ 𝑑(𝑚𝑜𝑑|𝑚|). 

For each such 𝑧, apply the PQa technique with 𝑃0 = 𝑧, 𝑄0 = |𝑚|, 𝑑 = 𝑑. Continue the process either there is an 𝑖 ≥ 1  with 

𝑄𝑖 = ±1  or without reaching an 𝑖 with 𝑄𝑖 = ±1, we get the end of the first period for the sequence 𝑎𝑖. 

In the next case, there will be no any i with 𝑄𝑖 = ±1. If we got an 𝑖 with 𝑄𝑖 = ±1, then 𝑟 = 𝐺𝑖−1, 𝑠 = 𝐵𝑖−1. If 𝑟2 − 𝑑𝑠2 =

𝑚,  then add 𝑥 = 𝑓𝑟 , 𝑦 = 𝑓𝑠 to the solution list. 

Else, 𝑟2 − 𝑑𝑠2 = −𝑚. Test the next 𝑧, if the equation 𝑡2 − 𝑑𝑢2 = −1 does not have solution. Let the minimal positive 

solution be (𝑡, 𝑢), and add 𝑥 = 𝑓(𝑟𝑡 + 𝑠𝑢𝑑), 𝑦 = 𝑓(𝑟𝑢 + 𝑠𝑡) to the list of solutions if the equation 𝑡2 − 𝑑𝑢2 = −1 has 
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solutions. Alternatively, repeat the PQa technique for one more period, then add 𝑟 = 𝐺 (𝑖 − 1), 𝑠 = 𝐵 (𝑖 − 1) and 𝑥 =

𝑓𝑟, 𝑦 = 𝑓𝑠 to the list of solutions for the next 𝑄𝑖 = 1. Because 𝑔𝑐𝑑(𝑟, 𝑠) = 1, the solution to the equation 𝑥2 − 𝑑𝑦2 = 𝑚 

produced is primitive. 

 

Brute-Force Search Technique (Mollin 1998, Leveque 1956) 

The Brute-Force Search technique is a method of problem-solving. Pell's equation can be solved by brute-force search 

technique because the general conditions on these solutions are known. Suppose that (𝑡, 𝑢) is the smallest solution to 

equation (2). 

If 𝑁 > 0, then, we search from 𝑦1 = 0 to 𝑦2 = √
𝑁(𝑡−1)

2𝑑
. 

 If 𝑁 < 0, then, we search from  𝑦1 = √
|𝑁|

2
  to 𝑦2 = √

|𝑁|(𝑡+1)

2𝑑
. 

For 𝑦1 ≤ 𝑦 ≤ 𝑦2  and if 𝑁 + 𝑑𝑦2  is square, then 𝑥 = √(𝑁 + 𝑑𝑦2) 

If (𝑥, 𝑦) and (−𝑥, 𝑦) are not equivalent, then add both to the list of answers; otherwise, just we add (𝑥, 𝑦). This list, when 

completed, provides the fundamental solutions. If 𝑦2 is not too huge, this technique works effectively. If (𝑥, 𝑦) is not 

equivalent to (−𝑥, 𝑦), add both to the list of solutions, otherwise just we add (𝑥, 𝑦) to the list. When finished, this list gives 

the fundamental solutions. This technique works well if 𝑦2 is not too large, which means that √
(𝑡±1)|𝑁|

2𝑑
 is not too large. Hence 

it suffices to search between the bounds 𝑦1 and 𝑦2. 

CONCLUSIONS 

There is a non-trivial solution to Pell's equation. Using a non-trivial solution of Pell's equation, we discussed some techniques 

for writing down all the solutions of a generalized Pell's equation. The generalized Pell's equation seems to have no universal 

techniques for finding all integer solutions. The generalized Pell's equation is described in this study, and different techniques 

are applied to investigate the general criterion for solvability of the generalized Pell's equation, with the objective of getting 

all positive integer solutions. 
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